
Package: C50 (via r-universe)
September 27, 2024

Type Package

Title C5.0 Decision Trees and Rule-Based Models

Version 0.1.8

Maintainer Max Kuhn <mxkuhn@gmail.com>

Description C5.0 decision trees and rule-based models for pattern
recognition that extend the work of Quinlan (1993,
ISBN:1-55860-238-0).

License GPL-3

URL https://topepo.github.io/C5.0/

BugReports https://github.com/topepo/C5.0/issues

Depends R (>= 2.10.0)

Imports Cubist (>= 0.3.0), partykit

Suggests covr, knitr, modeldata, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Biarch true

Config/testthat/edition 3

Encoding UTF-8

LazyLoad yes

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

Repository https://topepo.r-universe.dev

RemoteUrl https://github.com/topepo/c5.0

RemoteRef HEAD

RemoteSha 0e6db57d20ff8156d4a4554607baa4ffe762212d

1

https://topepo.github.io/C5.0/
https://github.com/topepo/C5.0/issues

2 C5.0.default

Contents
C5.0.default . 2
C5.0Control . 5
C5imp . 6
plot.C5.0 . 8
predict.C5.0 . 9
summary.C5.0 . 10

Index 12

C5.0.default C5.0 Decision Trees and Rule-Based Models

Description

Fit classification tree models or rule-based models using Quinlan’s C5.0 algorithm

Usage

Default S3 method:
C5.0(

x,
y,
trials = 1,
rules = FALSE,
weights = NULL,
control = C5.0Control(),
costs = NULL,
...

)

S3 method for class 'formula'
C5.0(formula, data, weights, subset, na.action = na.pass, ...)

Arguments

x a data frame or matrix of predictors.

y a factor vector with 2 or more levels

trials an integer specifying the number of boosting iterations. A value of one indicates
that a single model is used.

rules A logical: should the tree be decomposed into a rule-based model?

weights an optional numeric vector of case weights. Note that the data used for the
case weights will not be used as a splitting variable in the model (see http:
//www.rulequest.com/see5-win.html#CASEWEIGHT for Quinlan’s notes on
case weights).

control a list of control parameters; see C5.0Control()

http://www.rulequest.com/see5-win.html#CASEWEIGHT
http://www.rulequest.com/see5-win.html#CASEWEIGHT

C5.0.default 3

costs a matrix of costs associated with the possible errors. The matrix should have C
columns and rows where C is the number of class levels.

... other options to pass into the function (not currently used with default method)

formula a formula, with a response and at least one predictor.

data an optional data frame in which to interpret the variables named in the formula.

subset optional expression saying that only a subset of the rows of the data should be
used in the fit.

na.action a function which indicates what should happen when the data contain NA. The
default is to include missing values since the model can accommodate them.

Details

This model extends the C4.5 classification algorithms described in Quinlan (1992). The details of
the extensions are largely undocumented. The model can take the form of a full decision tree or a
collection of rules (or boosted versions of either).

When using the formula method, factors and other classes are preserved (i.e. dummy variables are
not automatically created). This particular model handles non-numeric data of some types (such as
character, factor and ordered data).

The cost matrix should by CxC, where C is the number of classes. Diagonal elements are ignored.
Columns should correspond to the true classes and rows are the predicted classes. For example, if C
= 3 with classes Red, Blue and Green (in that order), a value of 5 in the (2,3) element of the matrix
would indicate that the cost of predicting a Green sample as Blue is five times the usual value (of
one). Note that when costs are used, class probabilities cannot be generated using predict.C5.0().

Internally, the code will attempt to halt boosting if it appears to be ineffective. For this reason, the
value of trials may be different from what the model actually produced. There is an option to turn
this off in C5.0Control().

Value

An object of class C5.0 with elements:

boostResults a parsed version of the boosting table(s) shown in the output

call the function call

caseWeights not currently supported.

control an echo of the specifications from C5.0Control()

cost the text version of the cost matrix (or "")

costMatrix an echo of the model argument

dims original dimensions of the predictor matrix or data frame

levels a character vector of factor levels for the outcome

names a string version of the names file

output a string version of the command line output

predictors a character vector of predictor names

rbm a logical for rules

4 C5.0.default

rules a character version of the rules file

size n integer vector of the tree/rule size (or sizes in the case of boosting)

.

tree a string version of the tree file

trials a named vector with elements Requested (an echo of the function call) and
Actual (how many the model used)

Note

The command line version currently supports more data types than the R port. Currently, numeric,
factor and ordered factors are allowed as predictors.

Author(s)

Original GPL C code by Ross Quinlan, R code and modifications to C by Max Kuhn, Steve Weston
and Nathan Coulter

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0Control(), summary.C5.0(), predict.C5.0(), C5imp()

Examples

library(modeldata)
data(mlc_churn)

treeModel <- C5.0(x = mlc_churn[1:3333, -20], y = mlc_churn$churn[1:3333])
treeModel
summary(treeModel)

ruleModel <- C5.0(churn ~ ., data = mlc_churn[1:3333,], rules = TRUE)
ruleModel
summary(ruleModel)

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

C5.0Control 5

C5.0Control Control for C5.0 Models

Description

Various parameters that control aspects of the C5.0 fit.

Usage

C5.0Control(
subset = TRUE,
bands = 0,
winnow = FALSE,
noGlobalPruning = FALSE,
CF = 0.25,
minCases = 2,
fuzzyThreshold = FALSE,
sample = 0,
seed = sample.int(4096, size = 1) - 1L,
earlyStopping = TRUE,
label = "outcome"

)

Arguments

subset A logical: should the model evaluate groups of discrete predictors for splits?
Note: the C5.0 command line version defaults this parameter to FALSE, meaning
no attempted groupings will be evaluated during the tree growing stage.

bands An integer between 2 and 1000. If TRUE, the model orders the rules by their
affect on the error rate and groups the rules into the specified number of bands.
This modifies the output so that the effect on the error rate can be seen for the
groups of rules within a band. If this options is selected and rules = FALSE, a
warning is issued and rules is changed to TRUE.

winnow A logical: should predictor winnowing (i.e feature selection) be used?
noGlobalPruning

A logical to toggle whether the final, global pruning step to simplify the tree.

CF A number in (0, 1) for the confidence factor.

minCases an integer for the smallest number of samples that must be put in at least two of
the splits.

fuzzyThreshold A logical toggle to evaluate possible advanced splits of the data. See Quinlan
(1993) for details and examples.

sample A value between (0, .999) that specifies the random proportion of the data should
be used to train the model. By default, all the samples are used for model train-
ing. Samples not used for training are used to evaluate the accuracy of the model
in the printed output.

6 C5imp

seed An integer for the random number seed within the C code.

earlyStopping A logical to toggle whether the internal method for stopping boosting should be
used.

label A character label for the outcome used in the output. @return A list of options.

Author(s)

Original GPL C code by Ross Quinlan, R code and modifications to C by Max Kuhn, Steve Weston
and Nathan Coulter

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0(),predict.C5.0(), summary.C5.0(), C5imp()

Examples

library(modeldata)
data(mlc_churn)

treeModel <- C5.0(x = mlc_churn[1:3333, -20],
y = mlc_churn$churn[1:3333],
control = C5.0Control(winnow = TRUE))

summary(treeModel)

C5imp Variable Importance Measures for C5.0 Models

Description

This function calculates the variable importance (aka attribute usage) for C5.0 models.

Usage

C5imp(object, metric = "usage", pct = TRUE, ...)

Arguments

object an object of class C5.0

metric either ’usage’ or ’splits’ (see Details below)

pct a logical: should the importance values be converted to be between 0 and 100?

... other options (not currently used)

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

C5imp 7

Details

By default, C5.0 measures predictor importance by determining the percentage of training set sam-
ples that fall into all the terminal nodes after the split (this is used when metric = "usage"). For
example, the predictor in the first split automatically has an importance measurement of 100 per-
cent. Other predictors may be used frequently in splits, but if the terminal nodes cover only a
handful of training set samples, the importance scores may be close to zero. The same strategy is
applied to rule-based models as well as the corresponding boosted versions of the model.

There is a difference in the attribute usage numbers between this output and the nominal command
line output. Although the calculations are almost exactly the same (we do not add 1/2 to everything),
the C code does not display that an attribute was used if the percentage of training samples covered
by the corresponding splits is very low. Here, the threshold was lowered and the fractional usage is
shown.

When metric = "splits", the percentage of splits associated with each predictor is calculated.

Value

a data frame with a column Overall with the predictor usage values. The row names indicate the
predictor.

Author(s)

Original GPL C code by Ross Quinlan, R code and modifications to C by Max Kuhn, Steve Weston
and Nathan Coulter

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0(), C5.0Control(), summary.C5.0(),predict.C5.0()

Examples

library(modeldata)
data(mlc_churn)

treeModel <- C5.0(x = mlc_churn[1:3333, -20], y = mlc_churn$churn[1:3333])
C5imp(treeModel)
C5imp(treeModel, metric = "splits")

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

8 plot.C5.0

plot.C5.0 Plot a decision tree

Description

Plot a decision tree.

Usage

S3 method for class 'C5.0'
plot(x, trial = 0, subtree = NULL, ...)

Arguments

x an object of class C5.0

trial an integer for how many boosting iterations are used for prediction. NOTE: the
internals of C5.0 are zero-based so to get the initial decision tree you must use
trial = 0. If trial is set too large, it is reset to the largest value and a warning
is given.

subtree an optional integer that can be used to isolate nodes below the specified split.
See partykit::party() for more details.

... options passed to partykit::plot.party()

Value

No value is returned; a plot is rendered.

Author(s)

Mark Culp, Max Kuhn

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0(), partykit::party()

Examples

mod1 <- C5.0(Species ~ ., data = iris)
plot(mod1)
plot(mod1, subtree = 3)

mod2 <- C5.0(Species ~ ., data = iris, trials = 10)

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

predict.C5.0 9

plot(mod2) ## should be the same as above

plot first weighted tree
plot(mod2, trial = 1)

predict.C5.0 Predict new samples using a C5.0 model

Description

This function produces predicted classes or confidence values from a C5.0 model.

Usage

S3 method for class 'C5.0'
predict(
object,
newdata = NULL,
trials = object$trials["Actual"],
type = "class",
na.action = na.pass,
...

)

Arguments

object an object of class C5.0

newdata a matrix or data frame of predictors

trials an integer for how many boosting iterations are used for prediction. See the note
below.

type either "class" for the predicted class or "prob" for model confidence values.

na.action when using a formula for the original model fit, how should missing values be
handled?

... other options (not currently used)

Details

Note that the number of trials in the object my be less than what was specified originally (unless
earlyStopping = FALSE was used in C5.0Control(). If the number requested is larger than the
actual number available, the maximum actual is used and a warning is issued.

Model confidence values reflect the distribution of the classes in terminal nodes or within rules.

For rule-based models (i.e. not boosted), the predicted confidence value is the confidence value
from the most specific, active rule. Note that C4.5 sorts the rules, and uses the first active rule for
prediction. However, the default in the original sources did not normalize the confidence values.

10 summary.C5.0

For example, for two classes it was possible to get confidence values of (0.3815, 0.8850) or (0.0000,
0.922), which do not add to one. For rules, this code divides the values by their sum. The previous
values would be converted to (0.3012, 0.6988) and (0, 1). There are also cases where no rule is
activated. Here, equal values are assigned to each class.

For boosting, the per-class confidence values are aggregated over all of the trees created during the
boosting process and these aggregate values are normalized so that the overall per-class confidence
values sum to one.

When the cost argument is used in the main function, class probabilities derived from the class
distribution in the terminal nodes may not be consistent with the final predicted class. For this
reason, requesting class probabilities from a model using unequal costs will throw an error.

Value

when type = "class", a factor vector is returned. When type = "prob", a matrix of confidence
values is returned (one column per class).

Author(s)

Original GPL C code by Ross Quinlan, R code and modifications to C by Max Kuhn, Steve Weston
and Nathan Coulter

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0(), C5.0Control(), summary.C5.0(), C5imp()

Examples

library(modeldata)
data(mlc_churn)

treeModel <- C5.0(x = mlc_churn[1:3333, -20], y = mlc_churn$churn[1:3333])
predict(treeModel, mlc_churn[3334:3350, -20])
predict(treeModel, mlc_churn[3334:3350, -20], type = "prob")

summary.C5.0 Summaries of C5.0 Models

Description

This function prints out detailed summaries for C5.0 models.

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

summary.C5.0 11

Usage

S3 method for class 'C5.0'
summary(object, ...)

Arguments

object an object of class C5.0
... other options (not currently used)

Details

The output of this function mirrors the output of the C5.0 command line version.
The terminal nodes have text indicating the number of samples covered by the node and the number
that were incorrectly classified. Note that, due to how the model handles missing values, the sample
numbers may be fractional.
There is a difference in the attribute usage numbers between this output and the nominal command
line output. Although the calculations are almost exactly the same (we do not add 1/2 to everything),
the C code does not display that an attribute was used if the percentage of training samples covered
by the corresponding splits is very low. Here, the threshold was lowered and the fractional usage is
shown.

Value

A list with values

output a single text string with the model output
comp2 the call to this function

Author(s)

Original GPL C code by Ross Quinlan, R code and modifications to C by Max Kuhn, Steve Weston
and Nathan Coulter

References

Quinlan R (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, http:
//www.rulequest.com/see5-unix.html

See Also

C5.0(), C5.0Control(), summary.C5.0(), C5imp()

Examples

library(modeldata)
data(mlc_churn)

treeModel <- C5.0(x = mlc_churn[1:3333, -20], y = mlc_churn$churn[1:3333])
summary(treeModel)

http://www.rulequest.com/see5-unix.html
http://www.rulequest.com/see5-unix.html

Index

∗ models
C5.0.default, 2
C5.0Control, 5
C5imp, 6
plot.C5.0, 8
predict.C5.0, 9
summary.C5.0, 10

C5.0 (C5.0.default), 2
C5.0(), 6–8, 10, 11
C5.0.default, 2
C5.0Control, 5
C5.0Control(), 2–4, 7, 9–11
C5imp, 6
C5imp(), 4, 6, 10, 11

partykit::party(), 8
partykit::plot.party(), 8
plot.C5.0, 8
predict.C5.0, 9
predict.C5.0(), 3, 4, 6, 7

summary.C5.0, 10
summary.C5.0(), 4, 6, 7, 10, 11

12

	C5.0.default
	C5.0Control
	C5imp
	plot.C5.0
	predict.C5.0
	summary.C5.0
	Index

