Package: sparsediscrim 0.2.5.9000

sparsediscrim: Sparse and Regularized Discriminant Analysis

A collection of sparse and regularized discriminant analysis methods intended for small-sample, high-dimensional data sets. The package features the High-Dimensional Regularized Discriminant Analysis classifier from Ramey et al. (2017) <arxiv:1602.01182>. Other classifiers include those from Dudoit et al. (2002) <doi:10.1198/016214502753479248>, Pang et al. (2009) <doi:10.1111/j.1541-0420.2009.01200.x>, and Tong et al. (2012) <doi:10.1093/bioinformatics/btr690>.

Authors:John A. Ramey <[email protected]>

sparsediscrim_0.2.5.9000.tar.gz
sparsediscrim_0.2.5.9000.zip(r-4.5)sparsediscrim_0.2.5.9000.zip(r-4.4)sparsediscrim_0.2.5.9000.zip(r-4.3)
sparsediscrim_0.2.5.9000.tgz(r-4.4-any)sparsediscrim_0.2.5.9000.tgz(r-4.3-any)
sparsediscrim_0.2.5.9000.tar.gz(r-4.5-noble)sparsediscrim_0.2.5.9000.tar.gz(r-4.4-noble)
sparsediscrim_0.2.5.9000.tgz(r-4.4-emscripten)sparsediscrim_0.2.5.9000.tgz(r-4.3-emscripten)
sparsediscrim.pdf |sparsediscrim.html
sparsediscrim/json (API)
NEWS

# Install 'sparsediscrim' in R:
install.packages('sparsediscrim', repos = c('https://topepo.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/topepo/sparsediscrim/issues

Datasets:

On CRAN:

4.11 score 3 stars 86 scripts 648 downloads 27 exports 34 dependencies

Last updated 4 years agofrom:60198a54e0. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 07 2025
R-4.5-winOKJan 07 2025
R-4.5-linuxOKJan 07 2025
R-4.4-winOKJan 07 2025
R-4.4-macOKJan 07 2025
R-4.3-winOKJan 07 2025
R-4.3-macOKJan 07 2025

Exports:cov_autocorrelationcov_block_autocorrelationcov_eigencov_listcov_mlecov_poolcov_shrink_diagcv_partitiongenerate_blockdiaggenerate_intraclasslda_diaglda_eigenlda_emp_bayeslda_emp_bayes_eigenlda_pseudolda_schaferlda_shrink_covlda_shrink_meanlda_thomazlog_determinantqda_diagqda_shrink_covqda_shrink_meanrda_high_dimrda_high_dim_cvsolve_choltong_mean_shrinkage

Dependencies:bdsmatrixclicolorspacecorpcordplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellmvtnormnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr

Readme and manuals

Help Manual

Help pageTopics
Centers the observations in a matrix by their respective class sample meanscenter_data
Generates a p \times p autocorrelated covariance matrixcov_autocorrelation
Generates a p \times p block-diagonal covariance matrix with autocorrelated blocks.cov_block_autocorrelation
Computes the eigenvalue decomposition of the maximum likelihood estimators (MLE) of the covariance matrices for the given data matrixcov_eigen
Generates a p \times p intraclass covariance matrixcov_intraclass
Computes the covariance-matrix maximum likelihood estimators for each class and returns a list.cov_list
Computes the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality.cov_mle
Computes the pooled maximum likelihood estimator (MLE) for the common covariance matrixcov_pool
Computes a shrunken version of the maximum likelihood estimator for the sample covariance matrix under the assumption of multivariate normality.cov_shrink_diag
Randomly partitions data for cross-validation.cv_partition
Computes estimates and ancillary information for diagonal classifiersdiag_estimates
Computes multivariate normal density with a diagonal covariance matrixdmvnorm_diag
Generates data from 'K' multivariate normal data populations, where each population (class) has a covariance matrix consisting of block-diagonal autocorrelation matrices.generate_blockdiag
Generates data from 'K' multivariate normal data populations, where each population (class) has an intraclass covariance matrix.generate_intraclass
Bias correction function from Pang et al. (2009).h
Diagonal Linear Discriminant Analysis (DLDA)lda_diag lda_diag.default lda_diag.formula predict.lda_diag
The Minimum Distance Rule using Moore-Penrose Inverse (MDMP) classifierlda_eigen lda_eigen.default lda_eigen.formula predict.lda_eigen
The Minimum Distance Empirical Bayesian Estimator (MDEB) classifierlda_emp_bayes lda_emp_bayes.default lda_emp_bayes.formula predict.lda_emp_bayes
The Minimum Distance Rule using Modified Empirical Bayes (MDMEB) classifierlda_emp_bayes_eigen lda_emp_bayes_eigen.default lda_emp_bayes_eigen.formula predict.lda_emp_bayes_eigen
Linear Discriminant Analysis (LDA) with the Moore-Penrose Pseudo-Inverselda_pseudo lda_pseudo.default lda_pseudo.formula predict.lda_pseudo
Linear Discriminant Analysis using the Schafer-Strimmer Covariance Matrix Estimatorlda_schafer lda_schafer.default lda_schafer.formula predict.lda_schafer
Shrinkage-based Diagonal Linear Discriminant Analysis (SDLDA)lda_shrink_cov lda_shrink_cov.default lda_shrink_cov.formula predict.lda_shrink_cov
Shrinkage-mean-based Diagonal Linear Discriminant Analysis (SmDLDA) from Tong, Chen, and Zhao (2012)lda_shrink_mean lda_shrink_mean.default lda_shrink_mean.formula predict.lda_shrink_mean
Linear Discriminant Analysis using the Thomaz-Kitani-Gillies Covariance Matrix Estimatorlda_thomaz lda_thomaz.default lda_thomaz.formula predict.lda_thomaz
Computes the log determinant of a matrix.log_determinant
Removes the intercept term from a formula if it is includedno_intercept
Plots a heatmap of cross-validation error grid for a HDRDA classifier object.plot.rda_high_dim_cv
Computes posterior probabilities via Bayes Theorem under normalityposterior_probs
Diagonal Quadratic Discriminant Analysis (DQDA)predict.qda_diag qda_diag qda_diag.default qda_diag.formula
Shrinkage-based Diagonal Quadratic Discriminant Analysis (SDQDA)predict.qda_shrink_cov qda_shrink_cov qda_shrink_cov.default qda_shrink_cov.formula
Shrinkage-mean-based Diagonal Quadratic Discriminant Analysis (SmDQDA) from Tong, Chen, and Zhao (2012)predict.qda_shrink_mean qda_shrink_mean qda_shrink_mean.default qda_shrink_mean.formula
Quadratic form of a matrix and a vectorquadform
Quadratic Form of the inverse of a matrix and a vectorquadform_inv
Calculates the RDA covariance-matrix estimators for each classrda_cov
High-Dimensional Regularized Discriminant Analysis (HDRDA)predict.rda_high_dim rda_high_dim rda_high_dim.default rda_high_dim.formula
Helper function to optimize the HDRDA classifier via cross-validationrda_high_dim_cv
Computes the observation weights for each class for the HDRDA classifierrda_weights
Computes estimates and ancillary information for regularized discriminant classifiersregdiscrim_estimates
Stein Risk function from Pang et al. (2009).risk_stein
Computes the inverse of a symmetric, positive-definite matrix using the Cholesky decompositionsolve_chol
Tong et al. (2012)'s Lindley-type Shrunken Mean Estimatortong_mean_shrinkage
Example bivariate classification data from carettwo_class_sim_data
Helper function to update tuning parameters for the HDRDA classifierupdate_rda_high_dim
Shrinkage-based estimator of variances for each feature from Pang et al. (2009).var_shrinkage